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ABSTRACT

Although applications are nowadays often executed in virtual ma-
chines (VMs) to isolate applications or consolidate physical ma-
chines, VM network performance is still challenging. Packetiza-
tion, encapsulation, congestion control, preparations for loss, and
copying of data introduce unnecessary performance degradation
within a system where VMs communicate over abundant and reli-
able shared-memory. Although protocols like TCP are therefore
not well suited for kernel network stack in VMs, preexisting appli-
cations require the kernel socket interface to keep functioning.

In eliminating the unnecessary overhead for inter-VM commu-
nication and shifting it to the host operating system for communi-
cation over a physical NIC, our approach increases performance
for both cases of communicating with another VM on the same
host and for communicating with external hosts. Instead of mul-
tiplexing multiple connections over a single virtual Ethernet link,
we use a separate shared-memory connection for each VM appli-
cation socket. Our approach improves the stream and datagram
performance of existing applications over an unmodified socket
interface and brings the benefits of memory-mapped zero-copy
IO to modified applications without sacrificing isolation between
sockets.
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1 INTRODUCTION

Executing applications in virtual machines (VMs) is a widely ac-
cepted pattern not only to consolidate server machines into the
cloud but also to offload functionality into the edge, with, e.g.,
Cloudlets [22], to provide isolation in multi tenant container envi-
ronments, and to rigidly compartmentalize applications on client
machines [21]. Applications in these VMs get TCP and UDP net-
work access through the socket interface. Data is packetized and
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transmitted over virtual Ethernet to the host operating system (OS)
and there further forwarded to another VM or the physical NIC.

Encapsulating and decapsulating data in the TCP, IP and virtual
Ethernet protocol on each VM is resource intensive and induces
overhead for each individual packet in per packet forwarding and
policy decisions. Additionally, processor sharing between VMs
leads to anomalies in TCP congestion control [24]. Since main-
memory is abundant and reliable, techniques such as multiplexing
over a shared link, congestion control, and retransmissions, are
unnecessary for VMs. Protocols such as TCP should not be pro-
cessed by an OS Kernel in a VM. We therefore propose to replace
packet switched VM networks by a novel approach to improve the
communication in between VMs and to external hosts.

Existing applications depend on the functionality of the socket
interface. Our goal is therefore to provide the same behavior of the
socket interface although we propose a radical modification of the
underlying communication. Instead of packetizing data over virtual
Ethernet, we negotiate a separate shared-memory based connection
for each socket. This provides performance benefits for existing
applications and enables us to extend the socket interface with
zero-copy functionality to be used by modified applications. Unlike
other approaches, each application decides individually whether
to use the new zero-copy interface, and does not get access to the
sockets of other applications.

With our approach, no packetization is done when communicat-
ing between VMs on the same physical host, resulting in a factor
of up to 15.4 in goodput increase. When communicating with ex-
ternal hosts, TCP processing is shifted from the VM to the host
OS, showing potential to saturate 40 GBit NICs. The simplicity of
our approach provides several benefits to VM deployment. Since
every socket gets a connection separated in memory from all other
connections, we call this approach circuit switched VM networks.

Our contributions are as follows: We (1) replace virtual Ethernet
by a circuit switched network accessible over an unmodified socket
interface with extensions to provide per socket zero-copy IO for
modified applications. Further we (2) discuss several qualitative
benefits of this architecture. Through our evaluation we (3) show
the performance benefits of our appoach.

2 PROBLEM & REQUIREMENT ANALYSIS

Our approach is designed to be used in lieu of any datagram or
stream based protocol. To this end, we need to resemble the func-
tionality provided by such protocols. In the following, we discuss
our analysis of the most common datagram and stream based pro-
tocols, namely UDP and TCP. We first analyze the socket interface,
followed by a discussion of the major mechanisms the protocols
provide.
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2.1 The Socket Interface

From an application’s perspective the interface to the network is
the socket interface. To enable unmodified applications to com-
municate through our system, we need to closely resemble every
detail of that interface. Additionally, we can provide extensions for
improved performance, which is only achieved by application that
use our extensions.

We analyze the POSIX interface of the most common transport
protocols TCP and UDP. Fig.1 depicts the most important states
and API functions. A TCP socket is created to connect to a remote
host, listen for incoming connection requests, or by accepting an
incoming connection request. Communication is only possible once
the socket is connected to a remote host. A UDP socket starts
unbound and is either bound manually or by transmission of the
first datagram. Communication is then only possible in the bound
state.

We need to provide this API and internally track the socket
state to provide the correct responses of the resembled socket. For
example, a listening socket should create a new socket when an
incoming connection request is accepted while a non-listening
socket should refuse to do so. When providing new mechanisms
such as zero-copy IO, we still need to provide the existing interface
to allow unmodified applications to keep functioning.

2.2 Protocol Mechanisms

We identified the following mechanisms as important components
of TCP, UDP, or both that need special handling.

Connection Management. Since TCP is connection oriented
while UDP is not, our approach needs to support both modes. It
is necessary to create shared buffers to exchange data, hence, by
definition we always maintain a kind of connection. While connec-
tion oriented communication hence maps directly to our approach,
we need to ensure that for connection-less communication we still
provide the same interface, although a connection is set up under
the hood. Since applications need to establish a socket anyway,
even to use connection-less UDP, we can create the underlying
connection for a socket upon suitable actions on the existing socket
interface.

Connection establishment is often guarded by firewalls which
enforce connection policies and drop all packets not associated to
a permitted connection. To this end, the firewall needs to maintain
state about existing TCP connections and previous UDP datagrams.
Such configurations are much easier to realize in circuit switched
networks as only the connection setup needs to be checked and the
actual data packets need not be inspected. The latter only needs to
be done for firewalls that inspect payload data.

Finally, we need to have an addressing system to identify com-

munication partners in VMs and external hosts.
Addressing. TCP and UDP multiplex connections and need to be
able to address each application separately. To this end, the pair
of IP address and port number is used as a unique identifier. We
still need addressing for connection setup and therefore use these
addresses as well.

Our approach needs to handle connections to external hosts
differently from connections to other VMs. We therefore decide
upon connection setup whether to build a direct circuit connection
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Figure 1: Most important socket states and functions.

or, to translate the communication to TCP and UDP, similar to a
SOCKS Proxy [13].

Since IPv4 addresses are generally a scarce resource, techniques
such as network-address-translation are used to share IP addresses
and port numbers between VMs. Hence, we also need to support
address sharing between VMs.

Flow Control. To avoid overloading the receiver with too much
data TCP establishes flow control. Flow control essentially com-
municates the size of the receiver buffer to the transmitter and
prevents the transmitter from sending more data than the receive
buffer can fit. When the transmitter can directly write into the
buffer of the receiver, flow control is easy to realize as the amount
of available space is easily determined by the sender. However,
when the communication partner resides on a remote host and the
connection is translated to another TCP connection, we need to
communicate the receiver window towards the sender.

Loss, Congestion, and Reordering. Other issues of communi-
cation systems are packet loss, congestion, and reordering. For
direct communication via a single shared buffer, neither of those
can occur: If some payload can not be stored in the receive buffer
immediately, it is not transmitted at all. Hence, the packet is neither
corrupted nor lost at a full queue and congestion does not occur on
the network. Since main memory is reliable, payload on a single
connection is always received in the order it is transmitted.

Hence, loss recovery, congestion avoidance, and reordering only
needs to be handled for the proxy TCP connection established
towards a remote host.

Now that we have identified the requirements we continue with
a description of our approach.

3 CIRCUIT SWITCHED VM NETWORKS

In the following we introduce our general approach and discuss
how we solve the issues raised in the previous section as to enable
a circuit switched VM network that is compatible with existing
applications.

3.1 General Approach

The general approach is outlined and compared to virtual Ethernet
in Fig. 2. Traditionally, a network stack handling TCP, UDP, IP,
and Ethernet is established on every VM where data is packetized
and then forwarded through the host OS. We instead use for each
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connection a separate circuit consisting of shared-memory. This
already reduces overhead in eliminating the need to packetize pay-
load in the VM and using a single buffer simultaneously as receive
and transmit buffer for both sides. A separate circuit for each socket
also enables zero-copy IO leading to additional overhead reduction
for modified applications.

Circuits are established directly between VMs or, in the case
of communicating with an external host, between a VM and a
proxy stack in the host OS. The less privileged VM must always
provide the buffer memory to prevent denial-of-service attacks [26].
Requests to establish a circuit are forwarded by the switch operator
in between VMs and between VMs and the proxy stack. The switch
operator is therefore in the position to enforce connection policies
and mediate address sharing between VMs.

These building blocks are used to provide high performance
communication capabilities for applications in VMs.

3.2 Providing Protocol Functionality

We provide the functionality of TCP and UDP as follows.

Socket Interface Compatibility. Upon a socket entering the
connected or bound state (see Fig. 1), we allocate and establish a
circuit. For stream connections, the communication endpoint can
decide to accept or decline a connection request, such that we stay
in a pending state until the decision is received. This behavior maps
well to the existing TCP socket interface which already includes
such a pending state.

For datagram sockets we need to distinguish between dynami-

cally shared addresses of VMs and fixed assignments of IP addresses
or port numbers to VMs. With dynamically shared addresses the
decision to bind an unbound UDP socket needs to be made by the
switch operator, the only instance knowing whether the port num-
ber is already used. Since the UDP Socket interface does not have
a pending state, the bind operation then needs to block until an
answer from the switch operator is received. However with fixed
address assignment, the VM can decide by itself, which enables a
substantially faster response to the bind operation.
Payload Transmission. As elaborated in Sect. 2.2, during payload
transmission inside a shared-memory system we only need to en-
sure proper flow control. To this end, we split the shared-memory
of a circuit into two ring-buffers, one for each direction of com-
munication, and a control area containing pairs of read and write
pointers. The transmitter then detects a full receive buffer when
the write pointer reaches the read pointer and defers further trans-
mission until the read pointer advances. This resembles TCP’s flow
control, but with minimal propagation delays of receiver window
sizes. Additional communication features of TCP, e.g., shutdown
flags, reset flags, and urgent pointers are placed into the control
area. To differentiate the single datagrams in a circuit — which
the ring-buffer essentially maps to a stream — we prepend a small
header to each datagram. For datagram services, instead of delay-
ing transmissions we can drop incoming traffic if the receive buffer
is full to mimic UDP socket behavior.

For communication with external hosts, virtual Ethernet demul-
tiplexes incoming packets twice, the host OS selects the destination
VM which then needs to select the destination socket for each in-
coming packet. Our approach removes a demultiplexing step in
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Figure 2: Comparison of the virtual Ethernet approach to
our circuit-switched VM networks aprroach.

directly selecting the destination socket from the proxy stack in
the host OS. By using the circuit as transmit and receive buffer
for the proxy connection the proxy stack can synchronize the re-
ceiver window size with the available buffer space to ensure proper
congestion and flow control between the VM and an external host.
Zero-Copy Extension. We extend the socket interface by an
optional mechanism for full zero-copy. Since each socket uses a
separate circuit, the socket interface can be extended to map the
memory of a single socket directly into user-space. Once the mem-
ory of a circuit is mapped into the address space of the application,
the kernel is no longer needed to communicate on this socket except
for interrupt handling. Instead it is the application’s responsibil-
ity to follow the ring-buffer protocol. A modified application can
therefore avoid a copy operation in directly reading payload from
and writing payload to the shared memory. However, to avoid
time-of-check to time-of-use race conditions, an application should
not read the same payload twice, since the sending VM may have
modified the memory in between both reads. Since every circuit
has separate memory, zero-copy IO can be done separately for each
socket and is optional to each application. The in-memory protocol
remains unchanged when switching to zero-copy IO, therefore al-
lowing an application to switch forth and back between the legacy
socket interface and zero-copy IO at any time without notifying
the communication partner.

Our approach resembles the functionality of state-of-the-art
stream and datagram communications. In the following we elabo-
rate on the qualitative benefits before we discuss our performance
measurements.

4 QUALITATIVE BENEFITS

Besides improving the performance, circuit switched VM networks
also provide a range of qualitative benefits.

Network Isolation. The execution of applications in VMs is often
compared to executing them with containerization. From a network
isolation standpoint, a container shields raw packet access from
applications in only providing the socket interface, whereas a VM
gets full access to the raw network on all layers. Raw packet access
in VMs is considered a strong indicator for malicious behavior [6]
and may be used to hide attack patterns from a network intrusion
detection system (NIDS) through creating ambiguous and therefore
hard to analyze TCP streams [7, 19]. Additionally, raw packet access
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may be used to gain an unfair share of the network bandwidth by
using unfair congestion control [9].

Virtualization in the cloud [2] and virtualization to compartmen-

talize applications [21] involve VMs not trusted by the provider
of the host and network. When completely removing raw packet
access from VMs, none of this malicious behavior is possible. Be-
nign applications may continue to behave as usual since we provide
an interface to VMs which is similar to the interface provided by
containerization.
Transparent Transport Protocol Switching. TCP does not pro-
vide optimal performance in e.g., data center networks or for mobile
devices. The decoupling of VMs from packetization brings the op-
portunity to transparently choose a suitable transport protocol for
each connection. The switch operator may therefore decide to use
DCTCP [1] to hosts in the same data-center or MPFLex [18] towards
a multi-homed wireless device without involving the VM in the
decision. VMs may therefore benefit from improved performance
over external networks without requiring software modifications.
Improved VM Deployment. New VM deployment schemes such
as spawning a new VM upon a TCP connection request [14] and
sharing of IP addresses as well as TCP ports between VMs are
complicated in the traditional architecture by the placement of the
TCP stack inside the VM. These schemes require additional TCP
processing in the host OS with subsequent synchronization of TCP
state between host and VM. With our approach such schemes come
naturally, since we shift all TCP processing to the host OS.

High density VM deployments with up to thousands of VMs
on a single machine [15] require small VM sizes. Especially for
Unikernel VMs [12, 16] the TCP stack may present a significant
share of memory. The Linux Implementation of our approach
reduces the minimum VM size to run a single networked process
by 17% from 48 MiB to 40 MiB. Circuit switched VM networks
therefore increase the VM density.

Our approach provides several qualitative benefits. The next
section continues with a performance evaluation.

5 EVALUATION

We evaluate our approach by means of goodput and response time
benchmarks and a study on the applicability to existing applications.
We describe the implementation and setup before we discuss the
results.

Implementation. We implemented circuit switched VM networks
for Linux as OS for both VM and host (also called dom0) on the
Xen hypervisor.

To provide TCP and UDP access for applications in VMs, the VM
kernel networking stack is replaced by an implementation which
provides access to our circuits through the socket interface. Un-
modified applications are enabled by our choice to reimplement
the socket interface only in the Linux kernel without requiring any
user-space modifications. We used a test-driven implementation ap-
proach, to ensure unmodified behavior of the socket interface. Our
interface additionally provides means for zero-copy transmission.

Only the switch operator in the host OS is implemented purely in
user-space for simplicity. The switch operator establishes control
channels to VMs and connects circuits to the proxy stack through
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Linux kernel primitives providing Xen shared-memory and inter-
rupt handling. For communication with external hosts, it connects
each circuit to a regular Linux socket, which provides TCP and
UDP anyway. We used this implementation for our performance
benchmarks and our application compatibility study.

Setup. We performed all experiments on an Intel Xeon E5-4610 v4
CPU with 10 Cores, Hyper-Threading disabled, and 64 GiB of RAM.
The communication with an external host was performed with a di-
rect link over an Intel X710-T4 10 Gbit NIC. All circuit connections
used ring-buffer sizes of 64 KiB. We used Xen virtual Ethernet [4]
in the default configuration with a Linux bridge interface in the
host OS, and additionally used direct virtual Ethernet between VMs
to get a better comparison of circuits to virtual Ethernet. Measure-
ments are shown with 99% confidence interval over 20 repetitions
of goodput measurements and 200 repetitions of response time and
connection setup time.

Goodput Measurements. To measure stream goodput we trans-
mit data from a number of VMs in three scenarios to (1) an external
host, (2) the host OS, (3) another VM on the same host. We varied
the number of transmitting VMs from 1 to 128 and transmit a total
of 1 GiB of payload. Each transmitting VM is connected to its own
instance of a receiving application on a shared VM or host. We
measure the time from transmitting the first byte on the first VM
till receiving the acknowledgment for the last byte on the last VM.

For each scenario we employ three different approaches: First,
the legacy approach establishes a TCP connection via the virtual Eth-
ernet devices. Second, a legacy application uses the POSIX socket
interface provided by our circuit switched approach (circuit + legacy
app). Third, an application uses the zero-copy capabilities to di-
rectly access the shared buffer provided by our circuit switched
approach (circuit + zero-copy).

Fig.3 shows the results. In scenario (1) the goodput of our ap-
proach is limited by the 10 Gbit NIC, whereas virtual Ethernet
underutilizes the NIC.

This bottleneck is removed in scenario (2). However, in this
scenario our approach still needs to use the TCP stack in the host
OS, i.e., the data is transmitted over a circuit to the host OS and
then packetized over the host’s loopback interface. As depicted in
the results, our approach not only speeds up the performance with
a single VM but even benefits significantly from the opportunity
to parallelize the computations of multiple VMs. With 32 VMs the
circuit switched network with a legacy application achieves 4.2
times the throughput that can be achieved by TCP over virtual
Ethernet. Interestingly, the highest throughput of our approach
is reached with VM counts of 16-32, therefore having more VMs
than the 10 CPU cores, whereas virtual Ethernet reaches the highest
goodput int the range of 2-4 VMs. The zero-copy capabilities of our
socket interface bring another increase of up to 7 Gbit/s in goodput.
We attribute this to reduced processing in the VMs leaving more
CPU time for the host OS to perform TCP processing.

We conclude that circuit switched VM networks are suitable
for faster NICs, e.g., 40 Gbit, while virtual Ethernet barely reaches
10 Gbit. Furthermore, our approach scales well with an increasing
number of VMs and benefits significantly from the opportunity to
parallelize workload.
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Figure 3: Goodput for different numbers of VMs.

In scenario (3) (VM to VM communication) our approach can
unleash its full potential as no TCP packetizing is required any-
more, neither with zero-copy nor with legacy applications. On
the contrary, virtual Ethernet still requires TCP connections to be
established and achieves the same performance as in scenario (2).
Circuit switched VM networks, on the other hand, achieve goodput
of up to 100 Gbit/s even with an unmodified legacy application run-
ning in the VM. If the application uses the zero-copy capabilities,
goodput easily exceeds 100 Gbit/s with 4 to 128 parallel VMs and
reaches up to 137.2 Gbit/s. This is an improvement by a factor of
15.4 compared to the 10.5 Gbit/s achieved via virtual Ethernet.

We conclude that data transfers can be speeded up by more
than an order of magnitude when great amounts of data are to
be transmitted. To get a better understanding of the implication
on small payloads, we investigate round-trip times (RTTs) in the
following.

Response Times. To determine the influence of our approach on
delay, we measured VM to VM RTTs and connection setup time for
both (1) datagram and (2) stream sockets. All measured round-trips
consisted of a single byte request followed by a response of varying
size. Datagram responses are fragmented into payload sizes of at
maximum 1472 bytes. Fig.4 shows a decrease in RTT when using
circuits for all response sizes and an additional decrease in RTT
when performing zero-copy for all cases except stream responses
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Figure 4: RTT for different response sizes (byte) and the re-
sponse time of the bind and connect operation.

with a size below 64 KiB. Datagram RTT decreases by at least 61%
when using circuits with legacy sockets and decrease by at least an
additional 16% when performing zero-copy with up to an additional
decrease of 43% at 16 KiB. Stream RTT decreases by at least 45%
when using circuits with legacy sockets and additionally up to 19%
when performing zero-copy with a response size of at least 64 KiB.

Establishing a circuit takes more time than performing the TCP
handshake with another VM or binding a datagram socket. Fig.4
shows an increase in connecting a stream socket from 65.0 ys to
114.7 yus. When summing up connection time and RTT, stream cir-
cuits with large response sizes decrease delay for the first response.
However, for request sizes below 64 KiB, stream circuits are only
beneficial when performing at least 2 round-trips. For datagram
circuits, we measured the time of two different variants of the bind
operation, the normal case with returning before receiving a re-
sponse from the operator, and the dynamic port sharing case with
waiting for the switch operator to acknowledge circuit establish-
ment. Binding a datagram socket increases from 1.8 ys to 28.3 s
under normal circumstances and to 130.2 us when dynamically shar-
ing UDP ports between VMs. Datagram circuits therefore under
normal circumstances decrease response time already for the first
round-trip, whereas with dynamic port sharing, the benefit is de-
layed until the second to fourth round-trip depending on response
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size. We suspect, that the high connection setup times are caused
by our choice to implement the switch operator in user-space.
Circuit switched VM networks reduce delays in communicating.
Zero-copy brings in most cases an additional decrease in RTTs.
However the increase in connection setup time does not always
lead to a decreased delay for the first round-trip.
Application Compatibility. Additionally, we investigate the com-
patibility of unmodified applications with our approach. Since we
aimed to provide the original Linux socket interface, we expect any
application to run out of the box. In fact, we did not experience
any incompatibilities with any of the applications we tested. These
applications included the web browser Firefox, the online game
Quake 3, the Transmission BitTorrent client, the web server nginx,
the DNS server BIND, the Tor anonymity client, the Mutt email
client, and the command line tools openssh, git, aptitude, and wget.
Our evaluation shows an increased performance for most cases
while providing existing applications with a compatible socket
interface.

6 RELATED WORK

Offloading parts of TCP processing to the host has been proposed
in different variants. Menon et al. [17] suggested providing TCP
segmentation offloading to the VM virtual network interface. TCP
segmentation offloading is part of current Xen virtual Ethernet
and was enabled during our evaluation. The vSnoop [10] and
vFlood [5] approaches, offload TCP acknowledgment generation
and congestion control to the host. We go further in removing
TCP processing when possible and moving it to the host when
necessary.

Direct inter-VM communication has been proposed in different
variants. XenSockets [26] deviate from the TCP stream semantics
and use a different socket interface, thereby requiring modified
applications. XenLoop [25] proposes direct virtual Ethernet be-
tween VMs which we included into our performance evaluation.
XWAY [11] discovers collocation of two VMs on the same host to
use direct shared-memory communication, but only for streams.
Unlike our approach, none of these consider extending the benefits
to the communication with external hosts or providing zero-copy
IO.

Different proposals exist to change the VM networking archi-
tecture. NetVM [8] shares a single memory-area between the NIC
and all VMs on a host, thereby allowing zero-copy VM service
chains. Since each application gets full access to the network com-
munication of all VMs, this approach is only applicable if all VMs
are considered to be in the same trust domain. The ClickOS [16]
Unikernel extends the netmap [20] kernel bypass mechanism to
provide high packet throughput for Unikernel VMs and Linux. Both
NetVM and ClickOS focus on network function virtualization which
requires packet access, we, however, focus on VMs as network end-
points which allows us to provide per socket zero-copy IO without
sacrificing socket isolation.

Using the existing TCP stack of the host OS for VMs exists in
different variants. The socket-outsourcing approach [3] provides
VMs with remote system-calls into the socket interface of the host
OS, thereby heavily weakening the isolation between the VM and
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the host OS. The pvcalls [23] mechanism which is still under de-
velopment for the Linux kernel, uses the TCP stack of a Linux host
OS from a Xen VM. In comparison to pvcalls, circuit switched VM
networks bring additional benefits through zero-copy IO, direct
VM communication, and datagram circuits.

We propose to use separate shared-memory connection for each
socket, in order to provide per socket zero-copy I0. We also propose
to unify stream and datagram communication as well as direct VM
and external host communication through a mechanism of separate
circuits. To our knowledge, neither such socket zero-copy IO nor
such a unified communication mechanism upon separate circuits
has been previously proposed.

7 CONCLUSION

The processing of protocols like TCP in the Kernel of a VM is chal-
lenging for network performance. We therefore remove packetiza-
tion, encapsulation, congestion control, and unnecessary copying
of data whenever it is possible and move it to the host OS when still
necessary. This is achieved through replacing the single virtual
Ethernet link of each VM by a separate shared-memory connec-
tion for each application socket. Separate memory for each socket
brings the possibility to perform memory mapped zero-copy 10
without breaking network isolation between applications. Our
approach reduces overhead not only for communication between
VMs, but also when communicating with external hosts through
using a proxy stack in the host OS.

Existing applications depend on the behavior of the socket inter-
face which provides TCP and UDP access. We therefore provide
our approach over an unmodified socket interface for legacy ap-
plications and extend the socket interface with zero-copy IO func-
tionality for additional performance benefits available to modified
applications.

Our approach provides the opportunity to remove raw packet
access from VMs. Untrusted VMs can therefore be prevented from
using the raw packet access to forge malicious packets. The decou-
pling of the VM from the packet network stack brings deployment
benefits through smaller VM network stack sizes and the possibility
to transparently choose a suitable transport protocol in the proxy
stack.

We show significant performance improvement for both com-
munication between VMs and when communicating with external
hosts. The evaluation shows goodput increase up to a factor of 15.4
and RTT decrease up to 78%.

Circuit switched VM networks increase performance without
sacrificing socket isolation and bring the possibility to better isolate
the network from malicious VMs.
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