
Demystifying the Performance of XDP BPF
Oliver Hohlfeld

Brandenburg University of Technology, Germany
oliver.hohlfeld@b-tu.de

Johannes Krude, Jens Helge Reelfs, Jan Rüth, Klaus Wehrle
RWTH Aachen University, Germany

{krude,reelfs,rueth,wehrle}@comsys.rwth-aachen.de

Abstract—High packet rates at ≥ 10GBit/s challenge the
packet processing performance of network stacks. A common
solution is to offload (parts of) the user-space packet processing
to other execution environments, e.g., into the device driver
(kernel-space), the NIC or even from virtual machines into the
host operating system (OS), or any combination of those. While
common wisdom states that offloading optimizes performance,
neither benefits nor negative effects are comprehensively studied.

In this paper, we aim to shed light on the benefits and shortcom-
ings of eBPF/XDP-based offloading from the user-space to i) the
kernel-space or ii) a smart NIC—including VM virtualization. We
show that offloading can indeed optimize packet processing, but
only if the task is small and optimized for the target environment.
Otherwise, offloading can even lead to detrimental performance.

I . I N T R O D U C T I O N

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. This is the author’s version, the original publication appeared in IEEE Conference on
Network Softwarization (NetSoft) 2019, https://doi.org/10.1109/NETSOFT.2019.8806651.

Increasing network speeds challenge the packet processing
performance of current network stacks. A common solution to
this challenge is to bypass the kernel (e.g., [1], [2]) and process
packets entirely in user-space, alternatively, packet processing
can be offloaded into the kernel-space (e.g., [3], [4]) or even to
dedicated hardware (e.g., [5], [6]). Typical offloading targets
include in-kernel virtual machines (e.g., eBPF/XDP [4]) or
specialized hardware (e.g., SmartNICs [7]). These approaches
promise improved packet processing performance by shortcut-
ting the data path given that fewer software layers need to be
traversed, leading to higher throughput or shorter delays. While
offloading can be perceived as a general solution to speed up
packet processing, it only yields performance improvements
if the offloaded tasks are actually executed faster in the target
environment. As we will show, this is not always the case.

A second practical challenge is that offloading typically
requires to utilize target specific APIs or frameworks. This
hinders to seamlessly move packet processing tasks between
offloading targets or requires to adapt to the available targets.
With the introduction of the extended Berkeley Packet Filter
(eBPF) to the mainline Linux kernel, this situation has changed.
BPF provides an independent programming framework to define
packet processing tasks that can be executed in different target
environments with native performance. To this end, the eXpress
Data Path (XDP) [4] provides a safe execution environment to
run eBPF code in kernel-space within the device driver context.
Further, SmartNICs such as Netronome’s Agilio platform [7]
enable the execution of eBPF on the NIC itself. Thus, eBPF
provides a framework to enable offloading for a broad set of
applications.

In this paper, we empirically assess the performance of eBPF-
based offloading of packet processing tasks to provide a first
intuition when offloading is beneficial and when it is not. We
base this assessment on evaluating three common offloading
environments: the user-space via AF XDP-based kernel-bypass,
in-kernel virtual machines via XDP, and a network interface
card. We then consider two use cases: i) offloading from non-
virtualized user-space programs and ii) user-space programs
running within VMs. The latter addresses the common case of
packet processing tasks executed in cloud environments with
even more performance impairing software layers introduced
by virtualization. As generally expected, our preliminary
results show that offloading indeed often yields performance
improvements. However, as we will show, they vary by task
and offloading can even lead to detrimental performance figures
when offloading tasks that cannot be efficiently executed. This
highlights that offloading is not always an adequate solution to
improve packet processing performance. We posit that a deeper
understanding of offloading effects is necessary, especially with
the recent advent of offloading for the masses by eBPF.
Structure. Section II discusses related works before we explain
our measurement setup in Section III. Section IV continues by
analyzing offloading performance in non-virtualized settings
before Section V shows the impact when virtualization is added.
Finally, Section VI concludes the paper.

I I . R E L AT E D W O R K

Research identified bottlenecks in packet processing long
ago and has proposed solutions by either moving processing
down the network stack (e.g., [8]) or by offloading some
processing into deeper layers (e.g., [9])—a well explored
concept. Researchers pushed the limits by building [6] or using
programmable hardware [10]. Utilizing the GPU for multi-
pipeline and -processing lead to further hardware accelerated
solutions, e.g., [5]. Hardware dependent optimizations are
complemented by software designs, e.g., by splitting the control-
and data plane in the OS [11], leverage microkernels [12], [13],
or bypass the generic OS stack [1], [2].

However, improved networking performance does not nec-
essarily rely on such drastic measures. In [3], the authors
show that offloading of some processing into the OS network
stack achieves reasonable improvements. Today, such measures
are available off-the-shelf with the introduction of eBPF and
the XDP kernel interfaces [4]. Further, their rising popularity
has paved them their way into programmable hardware, e.g.,
Netronome SmartNICs [7] support eBPF/XDP offloading.
While [4], [14] show some performance measurements, they do978-1-5386-9376-6/19/$31.00 ©2019 IEEE

1 NIC2 XDP (driver)

3 kernel-bypass
AF_XDP

user-space
kernel

Figure 1: The execution points for the offloaded programs.

not provide a comprehensive and comparative view on different
offloading setups. We complement these works by shedding
light on pitfalls and possibilities of various setups that offload
processing to hardware or XDP in contrast to kernel-bypass
and extend this view to multi-tenant virtualized setups.

I I I . E X P E R I M E N TA L S E T U P

We compare the packet processing performance at three
different points which are illustrated in Figure 1. 1 We process
packets on a Netronome Agilio CX 2x10GbE SmartNIC by
putting an XDP program onto the NIC. Dropping or responding
to packets on the NIC itself should ideally yield the highest
performance since packet processing is limited by neither the
main CPU nor the OS. However, this offloading is bound to the
availability of a SmartNIC. 2 As a more generally available
option, we offload a program into the NIC’s device driver.
Handling packets in the device driver omits any overhead of the
generic OS networking stack. Therefore, the limiting factor is
mainly the Intel Core i7-7700 CPU, and the Netronome device
driver accepting packets from the NIC and calling the offloaded
XDP program for each packet. 3 For comparison, we also
execute XDP programs compiled for user-space. We therefore
use the Linux AF_XDP socket interface which provides high
throughput by utilizing stack-bypassing (alike DPDK/netmap).
Yet, we use the generic AF_XDP mode eliminating most, but
not all of the generic packet processing of the Linux 4.18.10
kernel (in contrast to an optimized device specific mode the
used NIC’s driver does not support).

In all measurements, we compare the execution of the same
XDP program at these different execution points. Traffic is
generated by up to four other machines connected to the
Netronome NIC through a Netgear XS728T 10 GBit switch.
We measure packet rates, update rates, and CPU usage by
tracking counters over 30 s intervals and repeat each individual
measurements 10 times.

I V. G E N E R A L O F F L O A D I N G P E R F O R M A N C E

We begin by evaluating the traditional use case of offloading
packet processing to the i) NIC, ii) kernel-space, and iii) via
kernel-bypass to user-space. By showing the offloading effect
on throughput and latency subject to the programs’ CPU and
memory complexity, we highlight achievable performance gains
and situations in which offloading is detrimental.

A. DoS Mitigation: Dropping at Line Rate

As a performance baseline of our testbed, we evaluate the
number of packet drops, i.e., as required for DoS protection as
a common use case. That is, we estimate the upper bound of
achievable packet rates by executing an XDP program which
immediately drops all packets and increments a drop counter.
To capture scalability and influence of the traffic distribution,

dr
op

 ra
te

 [p
kt

s/
s]

 0

 5 M

 10 M

 15 M

 1 2 3 4
CPU cores [#]

(a) Multiple Flows

 0

 5 M

 10 M

 15 M

 1 2 3 4
CPU cores [#]

NIC
XDP (driver)
kernel-bypass

(b) Single Flow

Figure 2: Maximum packet rate when dropping all packets.

 0

 5 M

 10 M

 15 M

 0 10 20 30 40 50 60 70 80

pa
ck

et
 ra

te
 [p

kt
s/

s]

checksum calculations [#]

NIC
XDP (driver) 4 cores
XDP (driver) 1 core
kernel-bypass 4 cores
kernel-bypass 1 core

Figure 3: The achievable packet rates when varying the amount
of processing for each packet.

we vary the number of used CPU cores and test minimum sized
packets with i) multiple flows and ii) only identical packets.

We show the mean measured drop rate as color-coded
symbols and the 99% confidence intervals with black bars
in Figure 2. In line with related work, our results highlight
large differences in achievable packet rates at the different
execution points; while our kernel-bypass never achieves line-
rate, both offloading variants can. That is, the program offloaded
to the NIC always achieves the full 10 Gbit/s drop rate of
14.88M pkts/s. By utilizing RSS, device driver (XDP) offload
performance scales with the number of CPUs if the traffic
contains multiple flows (cf. Figure 2a). Device driver offloading
suffices to achieve line-rate on our multi-core system. In the
case of single flow traffic (cf. Figure 2b), usual RSS does not
distribute flow processing to multiple CPU cores therefore
not improving packet processing performance on multiple
cores. Thus, when deciding how to offload, different traffic
distributions and their effects must be taken into account.
Takeaway. As generally known, offloading packet processing
improves the achievable packet rate. This rate, however,
depends on where and how the offloaded program is executed.
Offloading to the device driver can already perform at line-rate,
but only if the workload can be processed on multiple cores.

B. Influence of Processing Complexity: When the NIC is Slow

The packet processing performance is not only influenced
by the decision on where to offload but also by the amount of
required processing. To study this effect on a generic processing
workload, we next perform a varying number of computations
on each packet before dropping them.

We show the achievable packet rates for all execution
points when performing a varying number of IP checksum
computations as a proxy measure for processing complexity in

0

0.1

0.2

0.3

0.4

 10 100 1 k 10 k 100 k 1 M 10 M

re
sp

on
se

 ti
m

e
[m

s]

packet rate [pkts/s]

NIC
XDP (driver)
kernel-bypass

Figure 4: Response times to DNS ping.

Figure 3 which of course does not generalize to every kind of
processing. The results highlight a performance decrease with
an increasing processing complexity. Interestingly, the packet
rate drops much faster when offloading to the NIC’s CPU
in comparison to all other cases. The NIC already performs
worse than the device driver (4 cores) when only doing 6
checksums per packet due to a slower CPU on the NIC than
in the host system. This shows that offloading to hardware can
yield detrimental performance. Additionally, with an increase in
the amount of processing the difference between in-kernel and
kernel-bypass (user-space) decreases, since the fixed overhead
of the kernel-bypass shrinks relative to the increasing amount
of packet processing. Hence, the most gain for offloading can
only be achieved when the offloaded functionality involves
only limited processing.
Takeaway. The performance of offloading tasks depends on
the processing capabilities of the offloading target. With our
SmartNIC, offloading complex tasks from a fast in-host CPU
to a slower on-NIC CPU can slow-down packet processing
instead of achieving desired performance improvements.

C. Reducing Latency with Offloaded Responses

Offloading packet processing promises to reduce delay by
involving fewer software layers. To complement our throughput
perspective with a view on latency, we next measure the
influence of responding at different execution points at varying
packet rates. The offloaded program implements a DNS ping
by responding to all our identical minimum sized equally
spaced DNS requests with a hardcoded NXDOMAIN answer.
The response time is determined by taking hardware timestamps
for requests and responses on an Intel X550-T2 NIC connected
to a mirror port on our switch.

As shown in Figure 4, offloading to the NIC reduces response
times. The difference between kernel-bypass and the device
driver is, however, small compared to the influence of the packet
rate. At low packet rates, the response time is likely dominated
by the interrupt delivery and CPU wake-up time. Response
times for both kernel-bypass and the device driver drop, once
the CPU switches to polling mode. To achieve low on-CPU
response times, the system needs to be kept busy, e.g., with
higher packet rates, or busy waiting for new packets. Kernel-
bypass response times drastically increase above 2M pkts/s
since the CPU gets overloaded with requests.
Takeaway. Offloading processing tasks to the device driver
(XDP) can provide minor per-packet latency improvements,
depending on the processed packet rate. Large improvements

0.01

0.1

1

10

 0 2 M 4 M 6 M 8 M 10 M 12 M 14 M

re
sp

on
se

 ti
m

e
[m

s]

packet rate [pkts/s]

NIC large set
NIC small set

XDP (driver) large set
XDP (driver) small set

Figure 5: Delay when looking up DNS responses in memory.

can be obtained by offloading to the NIC whose latency figures
are independent of the packet rate with a maximum of 16 µs.

D. Memory Lookup Influence: Delivering Cached Responses

To study the influence of memory access, we extend the DNS
program to respond with different 16 Byte resource records
retrieved from an in-memory hash map. We generate two
different traffic classes: i) the small set consists of 362 different
DNS requests resulting in a response set of 20 KiB and, ii) the
large set contains 364 DNS requests resulting in 26 MiB.

The response time in Figure 5 again varies with the packet
rate. In all four shown variants, the response time drastically
increases once the system becomes overloaded. For the small
set, both the device driver and the NIC get overloaded at the
same rate of 9M pkts/s, whereas for the large set, the NIC is able
to handle a slightly higher packet rate than the device driver.
Once the system gets overloaded, the NIC still produces lower
response times than the device driver, however both experience
packet loss. The response times from the overloaded device
driver differs between both sets whereas the NIC eventually
yields the same response times for both sets, probably caused
by the employed memory caching strategy in the Intel CPU and
Netronome NIC. Although overall the NIC produces smaller
response times, when accessing the memory, the NIC becomes
overloaded at a similar point compared to the device driver.
Takeaway. Memory accesses can significantly affect the per-
formance especially when overloaded. The NIC only shows
slight advantages in maintaining small response times when
performing a memory access at increasing packet rates.

E. Memory Update Influence: Updating the Response Cache

An offloaded response cache is only useful when its entries
can be updated. When updating data stored on the NIC, changes
not only have to cross into kernel-space but also need to be
transmitted to the NIC. To study the performance of memory
updates, we continuously write from user-space our small and
large response set into the hash maps.

The update rates in Figure 6 show several orders of
magnitude in between the execution points. Kernel-bypass
and the device driver are influenced by the size of the updated
set, whereas the NIC shows no difference between both sets.
By taking more than 40 seconds to update the large set on the
NIC (26 MiB DNS resource records), the applicability of NIC
offloading of cached responses highly depends on the required
update rate.

 10 k

100 k

 1 M

 10 M

100 M

kernel-
bypass

XDP
 (driver)

NIC

up
da

te
 ra

te
 [e

nt
ri

es
/s

]

Large Set
Small Set

Figure 6: The rate at which
the data at different execution
points can be updated.

 0

 5 M

 10 M

 15 M

 1 2 3 4 dr
op

 ra
te

 [p
kt

s/
s]

CPU cores

NIC
host XDP (driver)
VM XDP (driver)
VM kernel-bypass

Figure 7: Maximum packet
rate when dropping all packets
for a VM.

Takeaway. The choice of execution points also influences the
memory update performance. Thus, depending on the use case
some offloading options may not offer required update rates.

V. O F F L O A D I N G F R O M V I R T U A L M A C H I N E S

Networked applications are often executed inside VMs,
especially in cloud environments. Virtualization adds additional
layers as packets traverse the NIC and the host OS, e.g., via
Open vSwitch, before they are forwarded over a virtual NIC
to a VM. Here, we suspect that the potential for improvements
through offloading are even higher. Handling packets in the
host OS device driver or the NIC both removes the overhead of
Open vSwitch processing and forwarding packets over the VM
boundary. Since VMs are often used in multi-tenant scenarios,
we also suspect that such offloading may lead to undesired
influences on neighboring VMs on the same host.

A. Maximum VM Packet Rate

To assess the potential for offloading from a VM, we repeat
the baseline drop measurements (cf. Section IV-A) at VM-
specific execution points. Therefore, we run a VM on the Xen
hypervisor (Version 4.9.2) with networking access provided
through Open vSwitch running in the host. We compare packet
drop rates in the VM via kernel-bypass in user-space (AF XDP
sockets) to drop rates in the VM virtual NIC driver (via XDP),
dropping them in the host OS device driver (dom0 XDP) and
on the NIC. Since the Xen virtual NIC driver does not yet
support XDP, we use our own variant which does support XDP.

As shown in Figure 7, the achievable drop rate is significantly
lower when forwarding packets into the VM. In existing
virtualization solutions, offloading to the VM device driver
is the only available offloading point without exposing full
access to the host OS. However, as our measurement shows, the
difference in achievable drop rate between VM kernel-bypass
and VM device driver is relatively small with a mean drop
rate of 874k pkts/s compared to 921k pkts/s when using 4 CPU
cores, respectively. Although the achieved drop rate in the
host device driver is smaller in comparison to our previous
measurements (see Figure 2), a VM may achieve a huge gain
by offloading packet processing to the host OS or to the NIC
if such an offloading solution is available.
Takeaway. Offloading within a VM is less beneficial in
comparison to potential benefits of offloading packet processing
from a VM to the host.

 0

100

200

300

400

VM
kernel-bypass

VM XDP
(driver)

host XDP
(driver)

NIC

C
PU

 u
sa

ge
 [%

]
 drop

calculations

VM share
host share

Figure 8: CPU shares for different execution points.

B. Isolation in Case of Offloading

VMs are often used as an isolation barrier between the host
OS and multiple tenants sharing the same hardware. If an
offloaded program is granted full access to the host OS or the
physical hardware, a VM may use the offloading mechanism to
break isolation. In the case of XDP, some protection is provided
through the Linux kernel verifying memory safety before
executing an XDP program. To allow concurrent offloading
from multiple VMs, such mechanisms must be extended to
also protect the offloaded programs from each other.

When executing an offloaded program on behalf of a VM
within the host OS on all traffic from a NIC, this program may
access, drop, and modify all traffic. Therefore, an offloading
mechanism for VMs needs to limit the execution of the
offloaded code by, e.g., only executing it when the destination
IP address belongs to the VM in question.

To continue, we assume such isolation exists. Since offload-
ing also shifts computation from one domain to another, we
investigate the effects CPU utilization in the next section.

C. VM CPU Usage

When processing packets for a VM, the CPU performs
work not only in the context of the VM itself but also in
the host OS. Since CPU usage in the shared host OS is not
accounted to any VM, we investigate the influence on CPU
usage while offloading to different points in the virtualized
stack. We execute two different programs: the drop program
minimizing computations and the checksum program from
Section IV-B configured to compute 150 checksums per packet
before dropping it. For both, we send traffic at 800k pkts/s
(below the maximum packet forwarding rate for the VM as
shown in Figure 7). VM and Host OS each use 4 virtual CPU
cores pinned to the 4 physical cores. We measure CPU shares
of the VM and host OS via counters from the Xen hypervisor.

Figure 8 shows CPU usage of the VM and the host as a
stacked bar plot. Offloading packet drops deeper into the stack
lessens CPU usage by avoiding successive packet forwarding
steps. Moving the program from the VM kernel-bypass to the
VM device driver lessens VM CPU usage but does not affect
the host OS CPU utilization since it still forwards all traffic to
the VM. When dropping in the host’s device driver or the NIC,
host CPU usage decreases as well. Offloading packet dropping
frees up CPU resources when the offloaded program does not
perform any additional calculations.

This picture changes when performing calculations in the
offloaded program. Since the additional calculations in the

 0

 1

 2

 3

 0 10 20 30 40 50 60 70 80 90 100 110 120 ne
ig

hb
or

 d
el

ay
 [m

s]

checksum calculations [#]

NIC
host XDP (driver)
VM XDP (driver)
VM kernel-bypass

Figure 9: Delay to a neighbor when offloading computation.

host’s device driver outweigh the savings from not forwarding
the packets to the VM, the host’s CPU usage increases due
to offloading. Although much work is performed on behalf
of a VM, existing accounting mechanisms would perceive the
VM as not using any CPU resources, since all work is shifted
to the host OS. I.e., a malicious VM may abuse offloading
mechanisms to perform costly computations in the host.
Takeaway. We conclude that an offloading mechanism needs
accounting, thus, limiting the amount of offloaded computation
and possibly informing the VM scheduler about offloaded CPU
usage. Otherwise, offloading bears the risk of introducing
unaccounted CPU usage in the shared host.

Since the NIC is typically also shared between multiple VM,
we examine the influence on a second VM in the next section.

D. Influence on Delay for Neighboring VMs

Offloading parts of one (virtualized) application may have
an influence on another (virtualized) application running on the
same host. In our next measurement, we look at the influence on
a delay-sensitive application when offloading computation. We
measure the response times for the DNS ping (cf. Section IV-C)
executed via kernel-bypass in the user-space of one VM while a
second VM offloads a varying amount of checksum calculations
to different parts of the stack. Both VMs are connected to
our switch over two different interfaces of a single NIC. We
generate DNS traffic at 10k pkts/s and send 800k pkts/s (as
before) to the checksum calculations.

The delay introduced for the DNS ping is shown in Figure 9
for a varying amount of offloaded checksum calculations.
Performing checksum calculations has little influence on the
delay of the neighbor VM as long as the calculations are
performed in the VM or in the host’s device driver. However,
when offloading calculations to the NIC, the delay for the
neighboring VM increases drastically with the amount of per
packet calculations. We observe a noteworthy delay increase at
70-80 checksum calculations which is likely the point when the
NIC becomes overloaded. Despite both VMs using different
interfaces, the NIC apparently shares internals for both. Thus,
both the DNS traffic and the checksum traffic are affected
although the former is not subject to any calculations on the
NIC. Performing computations on our NIC for some traffic
has the potential to introduce delay to all traffic for this NIC.
Takeaway. Offloading packet processing to the host OS brings
the potential of removing the costly packet forwarding to
the VM. Our used SmartNIC can introduce significant delays
for all non-offloaded applications when performing offloaded

computations. This must be taken into account especially for
shared infrastructure.

V I . C O N C L U S I O N

In this paper, we demonstrated the potential benefits and
shortcomings when using the new widely available offloading
mechanisms of the Linux kernel. To this end, we investigate
generic AF XDP kernel-bypass, XDP device driver offloading
and even offloading XDP programs to a Netronome SmartNIC.
We further show how these approaches are challenged in the
presence of virtualization. Our results indicate that offloading
can accelerate packet processing but only if the task remains
small. Especially our SmartNIC gets easily overloaded by too
heavyweight tasks. Furthermore, updating offloaded data may
be a costly operation. Yet, our SmartNIC excels when it comes
to ultra-low latency processing of small tasks. Virtual machines
benefit if data can be offloaded to the VM host, however, care
needs to be taken to guarantee isolation and fairness. While
it frees resources for other VMs, offloading further to the
NIC may negatively impact the responsiveness of other VMs.
Thus, in line with conventional wisdom, we conclude that
Linux’s general offloading framework for the masses offers
great potential, however, each use case is unique and actual
benefits must be evaluated individually.
Acknowledgements. This work has been funded by the DFG
as part of the CRC 1053 MAKI and SPP 1914 REFLEXES.

R E F E R E N C E S

[1] L. Rizzo, “Netmap: A Novel Framework for Fast Packet I/O,” in USENIX
Security, 2012.

[2] “Intel DPDK,” http://dpdk.org.
[3] O. Hohlfeld, H. Reelfs, J. Rüth, F. Schmidt, T. Zimmermann, J. Hiller, and

K. Wehrle, “Application-Agnostic Offloading of Datagram Processing,”
in IEEE International Teletraffic Congress, 2018.

[4] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The eXpress Data Path: Fast
Programmable Packet Processing in the Operating System Kernel,” in
ACM CoNEXT, 2018.

[5] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: A GPU-
accelerated Software Router,” in ACM SIGCOMM, 2010.

[6] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown,
“NetFPGA – An Open Platform for Teaching How to Build Gigabit-Rate
Network Switches and Routers,” IEEE Transactions on Education, 2008.

[7] J. Kicinski and N. Viljoen, “eBPF Hardware Offload to SmartNICs:
cls bpf and XDP,” in Netdev 1.2, 2016.

[8] M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad, “SPINE:
A Safe Programmable and Integrated Network Environment,” in ACM
SIGOPS Workshop, 1998.

[9] D. A. Wallach, D. R. Engler, and M. F. Kaashoek, “ASHs: Application-
Specific Handlers for High-Performance Messaging,” ACM SIGCOMM
CCR, 1996.

[10] A. Fiessler, S. Hager, B. Scheuermann, and A. W. Moore, “HyPaFilter:
A versatile hybrid FPGA packet filter,” in ACM/IEEE ANCS, 2016.

[11] A. Belay, G. Prekas, A. Klimovic, S. Grossman, C. Kozyrakis, and
E. Bugnion, “IX: A Protected Dataplane Operating System for High
Throughput and Low Latency,” in USENIX OSDI, 2014.

[12] B. N. Bershad, C. Chambers, S. Eggers, C. Maeda, D. McNamee,
P. Pardyak, S. Savage, and E. G. Sirer, “SPIN: An extensible microkernel
for application-specific operating system services,” in ACM SIGOPS
Workshop, 1994.

[13] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek, “The Click
Modular Router,” ACM SIGOPS Operating Systems Review, 1999.

[14] D. Scholz, D. Raumer, P. Emmerich, A. Kurtz, K. Lesiak, and G. Carle,
“Performance Implications of Packet Filtering with Linux eBPF,” in IEEE
International Teletraffic Congress, 2018.

