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ABSTRACT
With the move of Software-de�ned networking from �xed to pro-
grammable data planes, network functions are written with P4
or eBPF for targets such as programmable switches, CPU based
�ow processors [5] and commodity CPUs [7]. These data plane
programs are, however, limited in per-packet time budget [3] (e.g.,
67.2 ns at 10GbE) and program size, making program optimization
imperative [6]. Existing approaches focus on optimizing the distri-
bution of �ow rules in �xed data planes [4] or they are limited to a
single switch [2]. We see great potential in integrating the network
topology into program optimization.
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1 INTRODUCTION
Redundant computations by data plane programs on multiple nodes
remain invisible to conventional compiler optimizations which only
consider individual programs. In our approach, we incorporate the
network topology to optimize the code of program chains. For
example, the eBPF based Cilium load balancer [1] includes an exten-
sive IPv6 option parser needed to locate the TCP header. If another
node in the network unconditionally inserts a speci�c IPv6 option,
the load balancer no longer needs to check whether this option is
present. Our approach removes the no longer required parts of the
parser, increasing the packet rate of the Cilium load balancer by a
factor of up to 2.3 and decreasing the compiled program size by 88%.
We envision our approach to be included in network controllers to
optimize generalized data plane programs whenever needed.

2 CHAIN SELECTION
Parts of a data plane program are redundant if equivalent function-
ality was already applied to packets before reaching this program.
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The controller therefore uses its knowledge of the network topology
to discover program chains with optimization opportunities.

Since the optimizations improve the performance without al-
tering the resulting behaviour, they can be selectively applied to
performance critical hotspots. In case such a hotspot is located at
the intersection of multiple program chains, optimization oppor-
tunities can be increased through di�erent variants of the same
program, each optimized for a di�erent program chain. Omitting
programs without potential for optimizations from program chains
reduces analysis time and increases reuse of optimizations without
invalidating the optimizations.

3 CHAIN OPTIMIZATION
Our approach discovers optimizations for individual programs
while considering the network topology. We therefore express a
program chain as a combined program mimicking the network
behavior, e.g., our example chain becomes:
if (insert_ipv6_options(&packet) != DROP)

cilium_load_balancer(&packet);

On this combined program, exhaustive symbolic execution can
prove whether branches are dead or parts of the packet are constant.
Then, selectively replacing instructions in the individual programs,
e.g., replacing dead branches with jumps in the cilium IPv6 option
parser, enables further optimization with conventional compiler
passes such as dead code elimination. Our prototype optimizes the
cilium load balancer for our example chain in 30 s including 25 s of
symbolic execution.

4 CONCLUSION & FUTUREWORK
We propose to apply optimizations to data plane programs which
are valid for individual program chains. Our prototype shows sig-
ni�cant optimization potential for real-world programs.

To reduce the costs of the symbolic execution, we plan to provide
dedicated language abstractions to describe services and their com-
positions, which allow a less costly identi�cation and removal of
redundant code. By encapsulating header de�nitions in modules it
becomes easier to identify identical headers across programs. When
deriving conditions for headers their parsers can be minimized or
even removed if e.g., a header is e�ectively always inserted.
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