
Optimizing Data Plane Programs for the Network
Johannes Krude∗, Matthias Eichholz†, Maximilian Winck∗, Klaus Wehrle∗, Mira Mezini†

∗RWTH Aachen University, †Technische Universität Darmstadt
{krude,winck,wehrle}@comsys.rwth-aachen.de,{eichholz,mezini}@cs.tu-darmstadt.de

ABSTRACT
With the move of Software-de�ned networking from �xed to pro-
grammable data planes, network functions are written with P4
or eBPF for targets such as programmable switches, CPU based
�ow processors [5] and commodity CPUs [7]. These data plane
programs are, however, limited in per-packet time budget [3] (e.g.,
67.2 ns at 10GbE) and program size, making program optimization
imperative [6]. Existing approaches focus on optimizing the distri-
bution of �ow rules in �xed data planes [4] or they are limited to a
single switch [2]. We see great potential in integrating the network
topology into program optimization.

CCS CONCEPTS
• Networks→ Programmable networks.

KEYWORDS
programmable switches, eBPF, program optimization

ACM Reference Format:
Johannes Krude, Matthias Eichholz, Maximilian Winck, Klaus Wehrle,
and Mira Mezini. 2019. Optimizing Data Plane Programs for the Network.
In NetPL ’19: ACM SIGCOMMWorkshop on Networking and Programming
Languages, August 23, 2019, Beijing, China.ACM, New York, NY, USA, 1 page.
https://doi.org/10.1145/3341561.3349590

1 INTRODUCTION
Redundant computations by data plane programs on multiple nodes
remain invisible to conventional compiler optimizations which only
consider individual programs. In our approach, we incorporate the
network topology to optimize the code of program chains. For
example, the eBPF based Cilium load balancer [1] includes an exten-
sive IPv6 option parser needed to locate the TCP header. If another
node in the network unconditionally inserts a speci�c IPv6 option,
the load balancer no longer needs to check whether this option is
present. Our approach removes the no longer required parts of the
parser, increasing the packet rate of the Cilium load balancer by a
factor of up to 2.3 and decreasing the compiled program size by 88%.
We envision our approach to be included in network controllers to
optimize generalized data plane programs whenever needed.

2 CHAIN SELECTION
Parts of a data plane program are redundant if equivalent function-
ality was already applied to packets before reaching this program.

NetPL ’19, August 23, 2019, Beijing, China
© 2019 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in NetPL ’19: ACM
SIGCOMM Workshop on Networking and Programming Languages, August 23, 2019,
Beijing, China, https://doi.org/10.1145/3341561.3349590.

The controller therefore uses its knowledge of the network topology
to discover program chains with optimization opportunities.

Since the optimizations improve the performance without al-
tering the resulting behaviour, they can be selectively applied to
performance critical hotspots. In case such a hotspot is located at
the intersection of multiple program chains, optimization oppor-
tunities can be increased through di�erent variants of the same
program, each optimized for a di�erent program chain. Omitting
programs without potential for optimizations from program chains
reduces analysis time and increases reuse of optimizations without
invalidating the optimizations.

3 CHAIN OPTIMIZATION
Our approach discovers optimizations for individual programs
while considering the network topology. We therefore express a
program chain as a combined program mimicking the network
behavior, e.g., our example chain becomes:
if (insert_ipv6_options(&packet) != DROP)

cilium_load_balancer(&packet);

On this combined program, exhaustive symbolic execution can
prove whether branches are dead or parts of the packet are constant.
Then, selectively replacing instructions in the individual programs,
e.g., replacing dead branches with jumps in the cilium IPv6 option
parser, enables further optimization with conventional compiler
passes such as dead code elimination. Our prototype optimizes the
cilium load balancer for our example chain in 30 s including 25 s of
symbolic execution.

4 CONCLUSION & FUTUREWORK
We propose to apply optimizations to data plane programs which
are valid for individual program chains. Our prototype shows sig-
ni�cant optimization potential for real-world programs.

To reduce the costs of the symbolic execution, we plan to provide
dedicated language abstractions to describe services and their com-
positions, which allow a less costly identi�cation and removal of
redundant code. By encapsulating header de�nitions in modules it
becomes easier to identify identical headers across programs. When
deriving conditions for headers their parsers can be minimized or
even removed if e.g., a header is e�ectively always inserted.
Acknowledgements. Funded by DFG as part of CRC 1053 MAKI.

REFERENCES
[1] Cilium: Helping Linux Secure Microservices. https://www.cilium.io/. [2016-12-12].
[2] A Abhashkumar et al. P5: Policy-driven optimization of P4 pipeline (SOSR’17).
[3] O Hohlfeld et al. Demystifying the Performance of XDP BPF (NetSoft 2019).
[4] N Kang et al. Optimizing the “One Big Switch” Abstraction in SDN (CoNEXT’13).
[5] M Liu et al. IncBricks: Toward In-Network Computation with an In-Network

Cache (ASPLOS’17).
[6] F Rath et al. SymPerf: Predicting Network Function Performance (SIGCOMM

Posters and Demos ’17).
[7] M Xhonneux et al. Leveraging eBPF for programmable network functions with

IPv6 Segment Routing (CoNEXT’18).

https://doi.org/10.1145/3341561.3349590
https://doi.org/10.1145/3341561.3349590

	Abstract
	1 Introduction
	2 Chain Selection
	3 Chain Optimization
	4 Conclusion & Future Work
	References

