
Optimizing Data Plane Programs
for the Network

Johannes Krude1, Matthias Eichholz2,
Maximilian Winck1,
Klaus Wehrle1, Mira Mezini2

1RWTH Aachen University, 2Technische Universität Darmstadt
https://comsys.rwth-aachen.de/ NetPL ’19, 2019-08-23

&

https://comsys.rwth-aachen.de/


Data Plane Programs

• Shift from fixed to programmable data planes
I P4 on e.g., Barefoot Tofino
I eBPF on NPUs, e.g., Netronome NFP-6000
I eBPF with XDP e.g., Intel Core-i7

• Programs are executed for each packet
• Limited per-packet time budget

I e.g., 67.2 ns at 10GbE
• Limited program size

I NFP-6000: 8k instructions, XDP: 4k instructions, Tofino: 10-20 stages

• Existing optimization work
I Optimizing Flow Rules in SDN [Kang et.al., CoNEXT ’13]
I Optimizing programs on individual network nodes [P5, SOSR ’17]

[Rétvári et.al., NetPL ’17]

Our proposal
• Integrating the network topology into program optimization

2 Krude et al. &



Data Plane Programs

• Shift from fixed to programmable data planes
I P4 on e.g., Barefoot Tofino
I eBPF on NPUs, e.g., Netronome NFP-6000
I eBPF with XDP e.g., Intel Core-i7

• Programs are executed for each packet
• Limited per-packet time budget

I e.g., 67.2 ns at 10GbE
• Limited program size

I NFP-6000: 8k instructions, XDP: 4k instructions, Tofino: 10-20 stages
• Existing optimization work

I Optimizing Flow Rules in SDN [Kang et.al., CoNEXT ’13]
I Optimizing programs on individual network nodes [P5, SOSR ’17]

[Rétvári et.al., NetPL ’17]

Our proposal
• Integrating the network topology into program optimization

2 Krude et al. &



Data Plane Programs

• Shift from fixed to programmable data planes
I P4 on e.g., Barefoot Tofino
I eBPF on NPUs, e.g., Netronome NFP-6000
I eBPF with XDP e.g., Intel Core-i7

• Programs are executed for each packet
• Limited per-packet time budget

I e.g., 67.2 ns at 10GbE
• Limited program size

I NFP-6000: 8k instructions, XDP: 4k instructions, Tofino: 10-20 stages
• Existing optimization work

I Optimizing Flow Rules in SDN [Kang et.al., CoNEXT ’13]
I Optimizing programs on individual network nodes [P5, SOSR ’17]

[Rétvári et.al., NetPL ’17]

Our proposal
• Integrating the network topology into program optimization

2 Krude et al. &



Optimizing for the Network

Load BalancerFirewall

• Packets to the Load Balancer
have the following properties
I IPv6 TCP with some IPv6 options
I IPv6 & TCP dst have a fixed offset

• The parser has a fixed result
I Always the same headers
I At always the same offsets

Parts of a data plane program are
redundant if equivalent functionality

was already applied to packets
before reaching this program.

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

3 Krude et al. &



Optimizing for the Network

Load BalancerFirewall

• Packets to the Load Balancer
have the following properties
I IPv6 TCP with some IPv6 options
I IPv6 & TCP dst have a fixed offset

• The parser has a fixed result
I Always the same headers
I At always the same offsets

Parts of a data plane program are
redundant if equivalent functionality

was already applied to packets
before reaching this program.

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

3 Krude et al. &



Optimizing for the Network

Load BalancerFirewall

• Packets to the Load Balancer
have the following properties
I IPv6 TCP with some IPv6 options
I IPv6 & TCP dst have a fixed offset

• The parser has a fixed result
I Always the same headers
I At always the same offsets

Parts of a data plane program are
redundant if equivalent functionality

was already applied to packets
before reaching this program.

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

3 Krude et al. &



Optimizing for the Network

Load BalancerFirewall

• Packets to the Load Balancer
have the following properties
I IPv6 TCP with some IPv6 options
I IPv6 & TCP dst have a fixed offset

• The parser has a fixed result
I Always the same headers
I At always the same offsets

Parts of a data plane program are
redundant if equivalent functionality

was already applied to packets
before reaching this program.

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

3 Krude et al. &



Removing Redundancies

Load BalancerFirewall

Removing redundancies in a
downstream program does not

change the behavior.
• The same results are computed
• The same packets are transmitted
• But, only for this program chain
This example, XDP BPF Core i7-870
⇒ 2.3× packet rate (2.5→5.8 M pkt/s)
⇒ 12% program size(7.6→0.9 KiB)

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

4 Krude et al. &



Removing Redundancies

Load BalancerFirewall

Removing redundancies in a
downstream program does not

change the behavior.
• The same results are computed
• The same packets are transmitted

• But, only for this program chain
This example, XDP BPF Core i7-870
⇒ 2.3× packet rate (2.5→5.8 M pkt/s)
⇒ 12% program size(7.6→0.9 KiB)

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

4 Krude et al. &



Removing Redundancies

Load BalancerFirewall

Removing redundancies in a
downstream program does not

change the behavior.
• The same results are computed
• The same packets are transmitted
• But, only for this program chain

This example, XDP BPF Core i7-870
⇒ 2.3× packet rate (2.5→5.8 M pkt/s)
⇒ 12% program size(7.6→0.9 KiB)

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

4 Krude et al. &



Removing Redundancies

Load BalancerFirewall

Removing redundancies in a
downstream program does not

change the behavior.
• The same results are computed
• The same packets are transmitted
• But, only for this program chain
This example, XDP BPF Core i7-870
⇒ 2.3× packet rate (2.5→5.8 M pkt/s)
⇒ 12% program size(7.6→0.9 KiB)

Firewall
• Drops non IPv6 TCP
• Inserts fixed sized IPv6

options
I e.g., Authentication

Header

cilium.io Load Balancer
1. Parse Ethernet header
2. Parse IPv6 header
3. Loop: Parse IPv6 option
4. Extract IPv6 dst & TCP dst
5. Lookup & redirect to

backend

4 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

Problem: Conventional tools (e.g., llvm) only output the combined
optimized program

Solution: Instead use exhaustive symbolic execution

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

→ Identify dead branches
→ Identify constants in packet
→ …

Problem: Conventional tools (e.g., llvm) only output the combined
optimized program

Solution: Instead use exhaustive symbolic execution

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

→ Identify dead branches
→ Identify constants in packet
→ …

Problem: Conventional tools (e.g., llvm) only output the combined
optimized program

Solution: Instead use exhaustive symbolic execution

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

→ Identify dead branches
→ Identify constants in packet
→ …

3. Optimization
I Replace instructions in

downstream program

I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value

→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

→ Identify dead branches
→ Identify constants in packet
→ …

3. Optimization
I Replace instructions in

downstream program
I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value
→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Optimizing Program Chains

1. Program combination if (firewall(&packet) != DROP)
load_balancer(&packet);

2. Discovering redundancies
I Analyze combined program
I Identify conditions that hold

for all executions

→ Identify dead branches
→ Identify constants in packet
→ …

3. Optimization
I Replace instructions in

downstream program
I Run conventional compiler passes

→ Replace dead branch by jump
→ Replace constant read by value
→ Run dead code elimination

Runtime to optimize the cilium.io Load Balancer in our example
• 30 s for all steps including 25 s of symbolic execution

5 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer

6 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer

In Network Cache

6 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer A

Load Balancer B
Load Balancer C

6 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer A

Load Balancer B

6 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer A

Load Balancer B

6 Krude et al. &



Challenge: Program Chain Selection

A program may be part of
multiple network paths.

• Optimizing for multiple paths
I A single optimized variant

valid for all paths
I Different optimized variants for different paths

• Ignore some programs during optimization
I Only consider neighbours
I Leave out irrelevant intermediate nodes

• Selectively applying optimizations
I Optimize slow hotspots
I Identify program chains with high optimization potential
I Run some optimization whenever controller is idle

Firewall

In Network Cache

Load Balancer A

Load Balancer B

6 Krude et al. &



Summary

• Our proposal: Integrating the network topology into program
optimization

• High optimization potential on example with real-world program
I 2.3× packet rate increase
I 88% program size reduction

• Still much to do
I Improving optimization time
I Considering multiple network paths
I Evaluating on realistic networks

Questions?

7 Krude et al. &



Summary

• Our proposal: Integrating the network topology into program
optimization

• High optimization potential on example with real-world program
I 2.3× packet rate increase
I 88% program size reduction

• Still much to do
I Improving optimization time
I Considering multiple network paths
I Evaluating on realistic networks

Questions?

7 Krude et al. &


