

A Versatile Code Execution Isolation Framework with Security First

Johannes Krude Ulrike Meyer

Research Group IT Security RWTH Aachen University

isolating untrusted code execution

should be:

dead simple

should allow for:

Example 1

PaaS infrastructure

Example 1

memory protection: process barrier

system call access: seccomp filter based syscall policy

kernel

Dead Simple

memory protection:
process barrier

system call access: seccomp filter based syscall policy

Dead Simple

memory protection:
process barrier

system call access: seccomp filter based syscall policy

Example 2

plain computations: no slowdown

Ruby in isolation: < 100KiB memory overhead

isolation setup time: $< 10^{-8}s$

simple OS features
process barrier
system call policy

control all access path memory protection request delegation

try it out: http://sandbox.itsec.rwth-aachen.de/

Questions?

System Call Policy

disallow everything except:

- write on output pipe
- read on input pipe
- poll
- brk
- anonymous mmap
- mremap
- munmap

Isolation Setup Sequence

- 1. (S) pipe
- 2. (S) clone
- 3. (I) close
- 4. (I) execve
- 5. (I) setrlimit(RLIMIT_AS)
- 6. (I) prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER)

Request Delegation

